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A variety of problems in engineering and geology involve spreading cooling non-
Newtonian fluids. If the fluid is relatively shallow and spreads slowly, lubrication-style
asymptotic approximations can be used to build reduced models for the spreading
dynamics. The centrepiece of such models is a nonlinear diffusion equation for the
local fluid thickness, and ideally this should become coupled to a correspondingly
simple equation determining the local temperature field. However, when heat diffuses
relatively slowly as the fluid flows, we cannot usefully reduce the temperature equation,
and the asymptotic reduction couples the local thickness equation to an advection
diffusion equation that crucially involves diffusion in the vertical. We present an
efficient computational algorithm for numerically solving this more complicated type
of lubrication model, and describe a suite of solutions that illustrate the dynamics
captured by the model in the case of an expanding Bingham fluid with a temperature-
dependent viscosity. Based on these solutions, we evaluate two simpler models that
further approximate the temperature equation: a vertically isothermal theory, and
a ‘skin theory’. The latter is based on the integral-balance method of heat-transfer
theory, and demands that the vertical structure of the temperature field has the form
of an advancing boundary layer, or skin. The vertically isothermal model performs
well when the thermal conductivity is relatively large. The skin theory reproduces the
full dynamics qualitatively, if not quantitatively, for all thermal conductivities. The
main errors in both models arise near the fluid edge, where the numerical solutions
show that chilled fluid is overridden as the fluid expands, creating an underlying
collar of cold material. Encouraged by the success of the skin model, we extend the
theory by incorporating extensional stresses in the skin, which emerge when cooling
induces an extreme rheological change in the material, such as an exponential rise in
the viscosity. The model predicts that when skin stresses are sufficiently strong, the
skin is brought to rest, whilst hotter fluid expands underneath.

1. Introduction
In many contexts in engineering and geology, the central problem surrounds how

a cooling non-Newtonian fluid spreads on extrusion from a source, or as it slumps
to rest when suddenly released. The applications range from lavas (Griffiths 2000),
solid-state mantle plume heads (Bercovici & Lin 1996) and glaciers (Hutter 1983)
in geological settings, to molten films in chemical engineering (Braun et al. 1995)
and coolants in the nuclear industry (Dinh, Konovalikhin & Sehgal 2000). Related
problems arise if the spreading liquids are heated or influenced by forces generated by
changes in the concentration of a chemical either suspended or dissolved within the
fluid (Reisfeld, Bankoff & Davis 1991; Oron, Davis & Bankoff 1997; Chomaz 2001).
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When the fluid is relatively shallow and spreads slowly, we can often take advantage
of lubrication-style asymptotic approximations of the governing equations to build
simpler mathematical models of the spreading dynamics. The philosophy of the
lubrication approximation centres around the idea that the slenderness of the flow can
be used to filter out the dependence on the depth coordinate: asymptotically, we solve
explicitly for the fluid’s vertical structure, thereby eliminating that spatial variable.
For isothermal flows, the result of the asymptotic machinations is a simplified model
which typically takes the form of a nonlinear diffusion equation for the local fluid
thickness. When the fluid is also non-isothermal, we would ideally like to generalize
the theory by performing a similar reduction of the temperature (or concentration)
equation. The thickness equation then becomes coupled to a comparably simplified
equation describing the local temperature field, as described by Balmforth & Craster
(2000, hereinafter referred to as paper 1) and Bercovici & Lin (1996) in two geological
problems. A review of this approach in other contexts is given by Oron et al. (1997).

Unfortunately, the mathematical modelling becomes significantly more complicated
if the temperature diffuses relatively slowly. In this instance, the dimensional reduction
of standard lubrication theory fails because heat does not diffuse sufficiently quickly
to relax the temperature field to some local profile with a specified vertical structure.
Instead, we must keep track of detailed vertical structure in the diffusing field, which
amounts to solving the full advected heat equation. In other words, on proceeding
through the asymptotic theory, some simplification of the governing equations results,
but we cannot eliminate the depth coordinate from the final evolution equations that
emerge.

The purpose of the current article is to explore lubrication theory for a spreading
fluid with a slowly diffusing temperature field. This is precisely the physical state
encountered in several geological settings because the thermal conductivity of both
ice and lava is relatively small. A number of chemical engineering problems also have
this feature, in either thermocapillarity (Ehrhard & Davis 1991; Oron & Rosenau
1994) or where the diffusing substance is a chemical species (Jensen & Grotberg 1993;
Hosoi & Bush 2001; Chomaz 2001). At present, much of the existing literature assumes
either rapid diffusion across the layer, as in the conventional lubrication approach, or
that the chemical is an insoluble surfactant with no concentration whatsoever below
the surface. Either way, the number of space dimensions can be reduced. However,
the intermediate regime of moderate solubility and slow diffusion is not well studied.

The present theory is aimed largely at the modelling of evolving lava domes or
their experimental analogues (Griffiths 2000). With this application in mind, and to
keep the analysis fairly simple, we ignore many of the complicating physical effects
that arise in real fluids, such as surface tension, capillarity and solidification. Even so,
certain non-Newtonian effects are essential to this application, namely the existence
of a yield stress and strongly temperature-dependent material parameters (silicic lavas
have considerable yield stresses and the viscosity varies by several orders of magnitude
on cooling, see paper 1). Hence, we must consider a non-isothermal viscoplastic fluid,
which requires some choice for a rheological model. We adopt the Bingham model,
and allow the viscosity to depend on temperature, T :

τij = [η(T ) + τp/γ̇ ]γ̇ij for τ � τp,

γ̇ij = 0 otherwise,

}
(1.1)

where τij denote the components of the deviatoric stresses, γ̇ij = ∂ui/∂xj + ∂uj/∂xi

represents the rate-of-strain tensor in Cartesian coordinates, τp and η(T ) are the yield

stress and viscosity, τ =
√

τij τij /2 and γ̇ =
√

γ̇ij γ̇ij /2. The yield stress, τp , provides a
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cutoff below which the material forms plugs of rigid unyielded material. For practical
purposes, we assume that τp is independent of temperature, and adopt an exponential
dependence for η(T ). In our conclusions, we remark further on cases in which the
yield stress also depends on T .

We describe lubrication theory for this fluid in § 2, and compare the model with some
earlier theories. We solve the reduced model equations using a computational scheme
specially designed and optimized for the purpose. Since the problem is prototypical
of many others in related areas, a full description of the scheme is given in Appendix
A. The numerical solutions themselves are described in § 3, where we also draw some
conclusions regarding the dynamics captured by the model.

Although the computations are straightforward, they are intensive. Moreover,
the reduced model is cumbersome because it contains the full heat equation. This
motivates us to consider two further, simpler models that more crudely approximate
the heat equation: the vertically isothermal theory of paper 1, and a ‘skin theory’.
The first theory cannot be expected to work in the limit of low thermal conductivity,
which is the essential motivation behind our full computations, and we observe its
limitations later all too readily. The second theory is based on the integral-balance
method of heat-transfer theory (Özişik 1968), in which the vertical structure of the
temperature field is represented by a known function of depth that approximates
the expected solution. In particular, guided by the numerical solutions, we use an
integral-balance ansatz with the form of an advancing thermal boundary layer, or
skin. The skin depth and the temperatures at the base and surface are parameters of
the ansatz, but the boundary conditions force a certain relationship amongst them,
allowing us to rebuild the entire temperature field from only the surface temperature.
An analysis of the depth-integrated heat equation then provides an evolution equation
for this variable, and completes the reduced model. The derivation of the skin theory
is presented in § 4, together with some typical results and a comparison of all three
theories. The use of the integral-balance method in lubrication theory is not new –
several studies in chemical engineering have used the approximation (Reisfeld et al.
1991; Braun et al. 1995; see also Neri 1998). However, no previous studies solve the
full thin-layer model to verify that the integral-balance approximation is a good one,
and part of the motivation for the current work is to assess its performance.

In comparison to the full numerics, we find that the skin theory reproduces the
full dynamics qualitatively, if not quantitatively, for most thermal conductivities.
Encouraged by this success, in § 5 we extend the theory by incorporating extensional
(or longitudinal) stresses. Such stresses are normally ignored in lubrication theory
because they are usually dominated by vertical shear stresses (except in free films,
Erneux & Davis 1993, and viscous threads, Papageorgiou 1995). However, when
cooling induces an extreme rheological change in the material, such as an exponential
rise in the viscosity, the extensional stresses can become significant at the surface. Such
extreme viscosity variations are expected in the geological applications of our theory,
and so it is important to assess their effect. Extensional stresses are incorporated
straightforwardly in the skin model; § 5 describes the generalization and explores how
the spreading dynamics is modified.

2. Lubrication theory
2.1. Formulation

We begin from the governing fluid equations for an axisymmetric cooling dome
spreading over a horizontal plane, expressed in polar coordinates, (r, θ, z), and in a
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suitable dimensionless form. The non-dimensionalization is similar to that described
in paper 1; we introduce the lengthscale L and speed U to remove dimensions from
the radial distance, r , and velocity, u, and a depth scale H and speed HU/L for the
vertical counterparts, z and w. Pressure, p, is scaled with units of ρgH , where ρ is
density and g is gravity, and the deviatoric stresses, τij , and γ̇ij with units ρgH 2/L

and U/H , respectively. We further adopt T = Ta + (Te − Ta)Θ , where Ta and Te are
the ambient and eruption temperatures. In the slow-flow (zero-Reynolds-number)
approximation, the dimensionless equations are:

0 = −pr + ε∂rτrr + ∂zτrz + εr−1(τrr − τθθ ),

0 = −pz − 1 + ε2∂rτrz + ε∂zτzz + ε2r−1τrz,

}
(2.1)

1

r
(ru)r + wz = 0, (2.2)

Θt + uΘr + wΘz = κ

[
Θzz +

ε2

r
(rΘr )r

]
, (2.3)

and

τij = [A(Θ) + B/γ̇ ] γ̇ij for τ � B,

γ̇ij = 0 for τ < B,

}
(2.4)

where A(Θ) ≡ η/ηe, ηe is a reference value determined by the eruption temperature,
Te (so A(1) = 1), and except for the stress components, the subscripts indicate partial
derivatives. The equations contain a number of dimensionless groups: most important
is the aspect ratio, ε =H/L, which is assumed small and used to organize the
asymptotic expansion. The remaining two parameters are the inverse Péclet number,
κ , and Bingham number, B , defined by

κ =
LK

ρcpH 2U
, B =

τpH

ηeU
, (2.5)

where cp and K are the specific heat and thermal conductivity. Note that we have
ignored frictional heating on the grounds that it is typically small for lava (paper 1)
and any other source terms such as latent heat, because we omit solidification for
simplicity (both are easily incorporated, see Balmforth, Burbidge & Craster 2001).
Also, as in standard lubrication theory, we have demanded that the horizontal pressure
gradient balance the opposing viscous stresses, which requires U = ρgH 3/ηeL.

At the fluid base, we take the fluid to be motionless and insulated, except over a
vent of radius r∗ in which material at the eruption temperature is introduced with
a given vertical velocity. Hence, on z = 0, u =w = Θz =0 for r > r∗, whereas u =0,
w = Ω(r) and Θ = 1 for r � r∗, where Ω(r) specifes the incoming velocity profile. At
the surface, the fluid is considered stress free and loses heat according to a prescribed
cooling law:

τrz − hr (ετrr − p) = 0

ετzz − p − ε2hrτrz = 0

}
on z = h(r, t), (2.6)

and

κ[Θz]z=h = −µα(Θs), (2.7)

where µ is a dimensionless cooling parameter and α(Θs) is a given, order one,
function of the surface temperature, Θs(r, t) = Θ(r, h, t). For example, with Newton’s
law, α(Θs) = Θs . A more detailed discussion of the thermal boundary condition is
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given in paper 1 and by Neri (1998). There is also the kinematic condition,

ht + u(r, h, t)hr = w(r, h, t). (2.8)

2.2. Shallow-lava model

We now discard higher-order terms in ε in (2.1) to find:

pr = ∂zτrz, pz = −1. (2.9)

Thus, p = Ps + h − z and τrz = τs − (Psr + hr )(h − z), where Ps(r, t) and τs(r, t) denote
the surface pressure and shear stress. Application of the surface boundary conditions
indicates that Ps = τs = 0. Hence, p = h − z and τrz = −hr (h − z).

Also, from the constitutive law,

τrz =

[
A(Θ) +

B

|uz|

]
uz, (2.10)

if τ = |τrz| >B , and uz = 0 otherwise. Thence,

uz =

{
−A−1hr (Y − z) for z � Y (r, t),

0 for z > Y (r, t),
(2.11)

where the surface, z =Y (r, t) = Max(h − B/|hr |, 0), separates a lower layer of yielding
shearing material from an upper region occupied by fluid which, at leading order,
appears to flow like a rigid plug. In fact, analysis of higher-order terms (Balmforth
& Craster 1999) reveals that the upper region is actually weakly yielding, which
resolves the apparent contradiction that an axisymmetrical expansion cannot be
rigid. Consequently, we refer to the upper region as a pseudo-plug, and z = Y (r, t) as
a fake yield surface.

The velocity components now follow from quadrature, as does the depth-integrated
radial velocity:

U(r, t) =

∫ h

0

u(r, z, t) dz = −hr

∫ Y

0

(Y − z)(h − z)

A(Θ)
dz. (2.12)

This final quantity is required on combining the kinematic surface boundary condition
with the integral of the continuity equation:

ht +
1

r

∂

∂r
(rU) = Ω(r, t). (2.13)

Through the integral in (2.12), this equation for h is coupled to the advected heat
equation,

Θt + uΘr + wΘz = κΘzz, (2.14)

which must be solved subject to the flux condition (2.7) and the thermal boundary
conditions on the base.

We must also impose boundary conditions in radius. Symmetry demands that
hr = Θr = 0 at r = 0. At the edge of the dome, r = R(t), we should, in principle, insist
that h → 0, but the surface gradient can then become singular there (see Balmforth
et al. 2000). We avoid this complication by placing a lower limit on the thickness
of the fluid and imposing the boundary condition, h = hw for r � R, where hw is
typically taken to be 10−4. We solve the equations on a computational domain that
expands in time; an equation of motion for the edge of the domain can be found from
the h-equation and solved in conjunction with the two partial differential equations.
Further details are given in Appendix A.
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Dominant physics R(t) h0(t)

(i) Bulk viscosity t1/2 t0

(ii) Bulk yield stress B−1/5t2/5 B2/5t1/5

(iii) Bulk cold viscosity A
−1/8
0 t1/2 A

1/2
0 t0

(iv) Edge shear stress t4/7(δA0)
−1/7 → (cA0)

−1/7t1/2 (δA0/t1/2)2/7 → (cA0)
2/7

(v) Extensional stress (A0δ)
−1/4t3/4 → (cA0)

−1/4t5/8 (A0δ/t)1/2 → (cA0)
1/2t−1/4

Table 1. Various scalings that emerge by balancing the gravitational driving force with
retarding forces acting over either the bulk of the fluid, over a surface layer of depth δ, or
over an edge layer of thickness δ (cf. Griffiths & Fink 1993). In the latter cases, we then take
δ = ct1/2; arguments presented later suggest the estimate c = 2

√
3κ .

At this stage, it is useful to observe that there is still sufficient freedom in the
dimensional scalings to eliminate one of the dimensionless parameters. The lubrication
balance, U = ρgH 3/ηL, and the dimensional volumetric flow rate, Q = HLU , relate
U and H to L, but L is currently undetermined. We select L so that the fluid surface
cools over an order unity timescale. Specifically, the surface cooling time is O(κ/µ2),
and so we demand that µ =

√
κ . With this choice, the thermal boundary condition

becomes −
√

κ[Θz]z=h = α(Θs), and we are left with the parameters, κ , B and r∗. We
further fix the vent radius as r∗ = 0.05, on the grounds that it plays a minor role once
the fluid spans a much larger domain.

2.3. Previous results

Before we go about solving the shallow-lava model numerically (which is the focus
of the next section), we first relate the theory to some previously derived, simpler
models. We loosely classify these as either dimensional scaling theories, isothermal
models, or vertically isothermal theories. Because of their greater complication, full
thin-layer models have received less attention in the past, with one notable exception:
a relatively low thermal diffusivity is a characteristic feature of ice flow, and most
models of glaciers and ice sheets build in a thin-layer heat equation (Hutter 1983).
Despite this similarity, ice is not commonly assumed to possess a yield-stress (Glen’s
law, which is usually used to model ice, is equivalent to a power-law rheology) and
typically flows in the form of roughly steady streams, fed from upstream (by either
an ice reservoir or from snow accumulation) and dissipated downstream (by ablation
or outflow into water with its attendant calving of icebergs). A more closely related
thin-layer theory was presented by King, Riley & Sansom (2000) to model spreading
coolants in nuclear engineering, although they too ignored yield stresses and primarily
considered fixed volumes.

2.3.1. Dimensional scaling

Griffiths & Fink (1993) predict maximum dome height h0(t) and radius R(t) for
cooling extrusions using dimensional analysis. We summarize these results and place
them into our current notation as follows. For a constant-flux extrusion, the radius and
height are connected by h0R

2 ∼ t . Moreover, radial pressure gradients, pr = hr ∼ h0/R,
drive expansion and must be balanced by fluid stresses. On equating the volume-
averaged driving force,

∫∫
prr dr dz ∼ Rh2

0, with the volume average of the dominant
resistive stress, we can then extract the temporal behaviour of the maximum dome
height and radius. In table 1, we give the dimensional scaling results obtained in this
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way, assuming the dominant resistive stresses to be:
(i) Vertical shear stress acting over fluid interior at the eruption temperature∫∫
∂zτrzr dr dz ∼ R3/h0t with τrz = uz ∼ R/(h0t).
(ii) Yield stress acting over fluid interior

∫∫
∂zτrzr dr dz ∼ R2B with τrz ≈ B .

(iii) Vertical shear stress acting over fluid interior at the ambient temperature∫∫
∂zτrzr dr dz ∼ R3A0/h0t with τrz = A0uz, and A0 = A(0) representing the enhance-

ment of the viscosity due to cooling to the ambient temperature.
(iv) Cooling-enhanced shear stress at fluid edge

∫∫
∂zτrzr dr dz ∼ R2δA0/(th0) with

τrz =A0uz over a depth h0, but radial extent δ.
(v) Cooling-enhanced surface extensional stress

∫∫
∂rτrrr dr dz ∼ RδA0/t with

τrr ∼ A0ur over a depth δ.
The first three balances provide the scalings expected for either Newtonian domes

or yield-stress-dominated fluids (Huppert 1982; Blake 1990). Balance (iv) indicates
how expansion might be controlled by a cooling-enhanced shear stress in a cooled
layer near the dome’s rim (Griffiths & Fink 1993; see also Stasiuk, Jaupart &
Sparks 1993 and Lister & Kerr 1994), which further requires the time variation of
the layer thickness, δ. Griffiths & Fink assume δ to grow like a stationary thermal
boundary layer. Along these lines, we offer later the estimate δ ∼ 2

√
3κt , which leads

to the explicit temporal dependence also given in the table. The final case introduces
cooling-enhanced extensional stresses, which are incorporated in a more complete
way in our revision of the skin theory in § 5; as it turns out, the scaling result (v)
is misleading because extensional stresses arrest the expansion of the cooled surface
layers, but not the hotter fluid beneath.

2.3.2. Isothermal flow

When cooling is unimportant, the heat equation can be ignored and A(Θ) → 1,
leaving

ht =
1

6r

∂

∂r
[rY 2hr (3h − Y )] + Ω. (2.15)

This equation was explored in Balmforth et al. (2000). Various similarity solutions
appropriate to the Newtonian or yield-stress-dominated limits reproduce the
dimensional scaling results described above for flows controlled by bulk viscosity
or yield stress.

2.3.3. Vertically isothermal theories

When κ � 1, diffusion rapidly smooths temperature variations in the vertical,
leading to local thermal equilibrium at each radius. For the current problem, the
smoothed temperature field is uniform in z (paper 1), but alternative profiles can be
established with different boundary conditions (Bercovici & Lin 1996). We reduce the
thin-layer model accordingly as follows. We integrate the heat equation over the fluid
depth, and apply the thermal boundary conditions. We then make the approximate
replacement, Θ(r, z, t) → Θ̌(r, t), and evaluate the mass flux using Θ̌ . This generates
the model:

ht +
1

r
(rU)r = Ω, Θ̌t +

U
h

Θ̌r = −µ

h
α(Θ̌)+

Ω

h
(1−Θ̌), U =

hrY
2(3h − Y )

6A(Θ̌)
. (2.16)

Note that, in contrast to paper 1, we non-dimensionalize the viscosity with its value
at the eruption temperature, rather than that at the ambient temperature, since the
former plays a greater role in less diffusive domes.
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Figure 1. Snapshots of evolving domes: Four numerical computations with γ =6 and B = 0.
Shown are contours of constant temperature on the (r, z)-plane; contours are spaced by 0.1,
from 0 (black: cold) to 1 (white: hot). Each column represents a computation with different
inverse Péclet number: κ =0.01, 0.1, 1 and 10. Each row represents a snapshot at a given time:
t = 0.1, 1, 4 and 11.

3. Computational results
In figures 1–8, we show a collage of results that illustrate the dynamics contained

in the shallow lava model. For the purposes of illustration, we take the cooling law
and viscosity function,

α(Θs) = Θs, A(Θ) = exp γ (1 − Θ),

where γ is a parameter that determines the viscosity variation over the imposed tem-
perature range, and the mass source to be given by the constant-in-time flux function,

Ω(r) =
3

πr2
∗

[
Max

(
1 − r2

r2
∗
, 0

)]2

,

(with r∗ = 0.05). The initial condition is h(r, 0) = hw = 10−4 and Θ(x, z, 0) = 1.
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Figure 2. Snapshots of the dome thickness at the times t = 2.2n2, n= 1, 2, . . . , 10 for (a)
κ = 0.01 and (b) κ = 1, with B = 0 and γ = 6. The data are redrawn, scaling radius by the dome
radius, ξ = r/R, and thickness by dome height, h(r, t)/h(0, t), in the two smaller panels.
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Figure 3. (a) Dome radius and (b) maximal height for the computations of figure 1.
B = 0, γ = 6. The solid curves marked hot and cold show isothermal extrusions for fluids
at the eruption and ambient temperatures. The trends of the expected power laws for an
isothermal Newtonian fluid are h(0, t) ∼ t0 and R(t) ∼ t1/2; the inset in (a) shows R(t)/t1/2

versus t .

Figures 1–4 show results for B = 0 and γ = 6 (giving a viscosity variation of
about three orders of magnitude over the temperature range). Roughly speaking, all
the extrusions begin with an outflow of hot material that expands at the eruption
temperature (Θ = 1). The material begins to cool at the surface, but initially the
isotherms expand with the fluid. The expanding cooled rim of the dome dams up
the hotter fluid behind the flow front, causing the edge of the dome to steepen with
time (see the computation with κ = 0.01 in figure 2). Subsequently, after a time of
order 1/κ , the temperature field diffuses to an almost steady profile. Thereafter, the
fluid expands like an isothermal dome at the ambient temperature (Θ = 0). During
the later stages, the rim no longer dams up the flow, and the dome sides slump to
become less steep, as illustrated by the computation with κ = 1 in figure 2. Further
details of the expansion are shown in figures 3–4, which show the evolution of the
dome radius and height and the relaxation of the temperature profile for some of the
extrusions of figure 1.
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temperature, whereas the lighter lines show the basal temperature. (a) κ = 0.01, (b) 0.1, (c) 1.

When κ is small (left-hand columns of figure 1), the bulk of the fluid expands for
an extended period at the extrusion temperature. As the surface cools, the chilled
fluid is swept along the surface and deposited at the dome edge. There, the cooled
material becomes over-ridden by outflowing hot fluid, and creates an underlying layer
of cold fluid. The overlying hot flow subsequently reheats the cold material deeper
in the dome’s interior, leaving an expanding, low-lying collar of cold material near
the dome’s rim, as observed by Stasiuk et al. (1993) in their experiments with cooling
syrup.

For larger κ , diffusion acts more quickly, and the isotherms become nearly vertical
as time proceeds (last column of figure 1). The overall dynamics is similar to that
expected from the vertically isothermal theory (paper 1).

With finite yield stress, the general picture is much the same, see figures 5–7. The
first of these pictures displays snapshots at t = 11 of various domes with different B

and κ . Also indicated is the fake yield surface, z = Y (r, t), which becomes elevated
in the cooler parts of the domes where the viscous stresses are higher (we observed
this effect previously in the simpler model of paper 1). One difference with the B = 0
results is that cooling in domes with large B has a much smaller effect on the dynamics
of the expanding flow (see figure 6). Even in cases with smaller B , the effect of surface
cooling is more limited because the rheological variations are largely confined to
the dome’s pseudo-plug, where the yield stresses dominate the viscous shear stress.
Moreover, the continued upward growth of the dome reduces the outward transport
of cool material, and slows the build-up of cold fluid at the edge.

4. Skin theory
A main feature of the numerical solutions of the previous section is that, when κ is

small, cooling is concentrated at the upper surface of the fluid and a chilled boundary
layer descends into the interior of the fluid as it expands. Actually, the solution for
Θ can be surprisingly well represented by a piecewise continuous polynomial in z.
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Figure 5. Snapshots at t = 11 for four numerical computations with γ = 6 and differing κ
and B . As in figure 1, each picture shows isotherms. Also shown by the lighter solid curve is
the fake yield surface, z = Y (r, t). Each column represents a computation with different inverse
Péclet number: κ = 0.01, 0.1, 1 and 10. Each row represents a different B: 0.1, 1, 10 and 100.

This is illustrated in figure 8, which compares a snapshot of a numerical solution (for
B = γ =0) with such a function. The approximation does not capture the low-lying
collar of cold material, but works well everywhere else. This agreement motivates
us to use the integral-balance method to build a simpler ‘skin theory’. To whet the
reader’s appetite, we have also included the corresponding result from the skin theory
in panel (c) of figure 8.

4.1. Integral-balance solution

We begin by integrating the heat equation (2.14), from a level, z =h−δ, to the surface,
z = h:

[δ(Θ̄ − Θb)]t +
1

r

∂

∂r
[rδ(uΘ − ūΘb)] + δ(Θbt + ūΘbr ) = −µα(Θs) − κΘz|z=h−δ, (4.1)
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where the bar indicates the vertical average,

f̄ (z) = δ−1

∫ h

h−δ

f (z) dz,

the subscripts s and b denote the values at the surface and base of the skin, and we
have used the kinematic surface boundary condition and the continuity equation.

We now introduce the integral-balance ansatz for Θ(r, z, t), the piecewise continuous
polynomial,

Θ =

{
Θb − (Θb − Θs)P(ζ/δ) for ζ � δ,

Θb for ζ > δ,
(4.2)
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Panel (a) shows the full numerical solution, (b) displays the profile computed from the surface
temperature assuming the integral-balance ansatz for the temperature field (Θ = Θb − (Θb −
Θs)(1 − (h − z)/δ)2, where δ = Min[2κ1/2(1 − Θs)/Θs, h] and Θb = Θs(δ +2

√
κ)/(2

√
κ)), and (c)

shows the integral-balance solution computed using the skin theory of § 4.

where ζ = h − z and P(x) is a known function with the properties, P(1) = P′(1) = 0
and P(0) = 1. A popular, convenient choice is P(x) = (1 − x)m, for some m > 1. For
practical purposes, we adopt this form with m =2, as illustrated in figure 8. Certain
choices of P(x) are presumably more accurate than others in given situations, but
there is no obvious optimal selection. The integral-balance solution in (4.2) has the
properties that the temperature field below the skin is uniform, and Θz = 0 at the
skin’s base. Thus, to be consistent with the initial condition, we take Θb =1 if h> δ.
However, if the skin extends throughout the dome and touches the base, we take
δ = h and allow Θb to decrease by cooling.

The integrated heat equation (2.14) can now be written in the form,

[δ(Θ̄ − 1)]t +
1

r

∂

∂r
[rδ(uΘ − ū)] = −µα(Θs), (4.3)

where we have used the fact that either Θb = 1, or δ = h and ht + r−1∂r (rδū) = 0.
Furthermore, with (4.2), we find the relations,

Θ̄ = Θb − (Θb − Θs)

∫ 1

0

P(x) dx = Θb − c1(Θb − Θs) (4.4)

and

Θζ (r, 0, t) = −1

δ
(Θb − Θs)P′(0) =

c2

δ
(Θb − Θs), (4.5)

for two constants c1 and c2 (equal to 1/3 and 2, respectively, for our polynomial
selection). These lead to the expressions,

δ = Min

[
κc2(Θb − Θs)

µα(Θs)
, h

]
, Θb = Θs +

δµα(Θs)

κc2

. (4.6)

Hence, all variables determining the temperature field may be built from Θs .
Finally, we define a convenient new variable,

E =
δ(1 − Θ̄)

µc1c2

= [1 − Θb + c1(Θb − Θs)]
δ

µc1c2

, (4.7)
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to arrive at the reduced heat equation,

Et +
1

r

∂

∂r
(rūE) − 1

r

∂

∂r

[
rδ

µc1c2

(
uΘ − ūΘ̄

)]
=

1

c1c2

α(Θs). (4.8)

This equation contains advection by the vertically integrated radial velocity, with a
correction accounting for the vertical structure of the temperature field, and surface
cooling. There is no source term other than that arising from convergence of the flow,
which deepens the skin layer. Thus, the skin always cools and is never replenished
from beneath or from its edges.

4.2. The velocity field

The integral-balance solution divides the fluid into two regions: a superficial skin and
an underlying isothermal interior. In the interior, Θ = A= 1. Thus, p = Ps + h− z and
τrz = τs − (Psr + hr )(h − z), as in the shallow-lava model. When rheological changes
are not severe, the stress components remain unchanged also within the skin, and we
again find that Ps = τs = 0. The constitutive law then predicts that

uz = −hr Max(Y − z, 0), Y = Max(h − B/|hr |, 0), (4.9)

and we again have a pseudo-plug riding over a lower shear layer. The velocity at
the base of the skin can be written in the compact form, ub = −hrZ(Y − Z/2), where
Z = Min(Y, h − δ). Similarly, the depth-integrated radial velocity in the interior is∫ h−δ

0

u dz ≡ U = (h − δ)ub − 1
6
hrZ

2(2Z − 3Y ). (4.10)

In the skin, the constitutive relation becomes

A(Θ)uz = −hr Max(Y − z, 0). (4.11)

Thence,

ū =
1

δ

∫ δ

0

u(r, ζ, t) dζ ≡ ub−1

δ

∫ δ

0

ζuζ dζ = ub−1

δ
hrH (δ−h+Y )

∫ δ

h−Y

ζ (ζ − h + Y ) dζ

A(Θ)
,

(4.12)
with H (x) the step function. However, for our illustrative viscosity law,

A(Θ) = exp(γ (1 − Θ)) = exp(γ (1 − Θb) + qP(ζ/δ)), (4.13)

where q = γ (Θb − Θs). Hence, on specializing to P(ζ/δ) = (1 − ζ/δ)2,

ū = ub − hry
2
Lδ2 exp(−γ (1 − Θb))[I0 − (1 + yL)I1 + yLI2], (4.14)

where yL = Max[1 − (h − Y )/δ, 0] and

Ij =

∫ 1

0

yj exp
(
−qy2

Ly2
)
dy. (4.15)

These integrals can be written as error functions for j even, or performed analytically
for j odd.

Similarly, we find

uΘ − ūΘ̄ =
y3

Lδ2hr

3
exp(−γ (1 − Θb))(Θb − Θs)

[
I1 − I2 + y2

L(I4 − I3)
]
. (4.16)

We now have a fully prescribed skin model.
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4.3. A summary of the equations

For P(x) = (1 − x)2, α(Θs) = Θs and µ2 = κ , the equations are summarized as follows:

ht = −1

r

∂

∂r
[r(U + δū)] + Ω, Et +

1

r

∂

∂r
[r(ūE − G)] = 3

2
Θs, (4.17)

with

Θs =

{
1 + E/2 −

√
E(1 + E/4) E � Em = h2/[2

√
κ(h + 2

√
κ)],

(
√

κ/h)(3h − 2
√

κE)/(h + 3
√

κ) E > Em,
(4.18)

δ =

{
2

√
κ(1 − Θs)/Θs E � Em,

h, E > Em,
Θb =

{
1 E � Em,

(h + 2
√

κ)Θs/2
√

κ E > Em,
(4.19)

ub = − 1
2
hrZ(2Y − Z), U = (h − δ)ub − 1

6
hrZ

2(2Z − 3Y ), (4.20)

ū = ub − δ2hr

2q
exp(−γ (1 − Θb))

[
(2qyL + 1)yLI0 − 1 − yL + exp

(
−qy2

L

)]
,

(4.21)
q = γ (Θb − Θs),

G = yLδ3hr exp(−γ (1 − Θb))
2q(1 − I0) + 3I0 − exp

(
−qy2

L

)
− 2

8γ q
√

κ
,

(4.22)

I0 =

√
π Erf(yL

√
q)

2yL

√
q

,

Y = Max

(
h − B

|hr |
, 0

)
, Z = Min(Y, h − δ), yL = Max

(
1 − h − Y

δ
, 0

)
. (4.23)

4.4. Some limits

If Y < h − δ, yL = 0 and the fake yield surface lies inside the yielding region. The
temperature change then has no effect, reflecting how rheological changes are unim-
portant within the pseudo-plug. Cooling affects the spreading dynamics only when
the skin extends into the shearing regions, i.e. when h − δ < Y .

If we ignore the motion of the dome, the heat equation reduces to Et = 3Θs/2.
Provided Θs 
 1, we integrate to find δ = 2

√
3κt , an estimate we use in the dimensional

analysis of § 2.3.1.
γ → 0: δū + U → −hrY

2(3h − Y )/6, and the heat equation decouples, leaving the
isothermal h-equation.

κ � 1: δ → h, Θb → Θs , and we recover the vertically isothermal model in (2.16)
with Θ̌ → Θs and U → δū.

γ � 1: q � 1 and I0 →
√

π/(4qy2
L) 
 1, implying that G 
 1 and ū → ub. Thus

the flow in the skin becomes plug-like no matter where the fake yield surface lies. In
other words, the enhanced vertical shear stress flattens the velocity profile inside the
skin.

4.5. Numerical solutions and comparison with shallow-lava theory

We solve the skin equations using two codes (the comparison provides independent
verification of the results); details are given in Appendix A.1. A sample solution of the
skin model is displayed in figure 9 for B =0, κ = 0.01 and γ = 6, and corresponds to the
computation with the full thin-layer model shown earlier in the first column of figure
1 and in panel (a) of figures 2 and 4. Also displayed in figure 9 are the final profiles of
thickness and surface and basal temperatures for both the full thin-layer theory and
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Figure 9. A solution of the skin model with B = 0, κ = 0.01. The panels show snapshots
of (a) thickness (dark lines) and skin depth h − δ (light lines), and (b) surface (dark lines)
and basal (light lines) temperature at t = 2.2n2, n= 1, . . . , 10. In (a), we also show the final
thickness profiles of the full thin-layer theory (FTLT) and the vertically isothermal model
(VIM), together the Θ = 0.95 isotherm of the full theory (light dotted line; this isotherm
provides an estimate of skin depth). Panel (c) compares the final temperature distributions of
the three models (namely the surface, basal and vertically averaged temperatures). The surface
temperatures of the skin model and full thin-layer theory are barely distinguishable, whereas
the vertically isothermal model only provides a prediction of the average.

the vertically isothermal model. The thickness profile and surface temperature of the
skin model match those of the full thin-layer theory fairly closely. The comparison
of basal temperature is less satisfactory for two reasons. First, the switch between
the two forms of the integral-balance ansatz arising when the skin touches the base
creates an artificial, abrupt change in Θb. Secondly, in the full shallow-lava model,
cooled fluid is advected along the surface and overrun by the evolving dome, forming
the cold collar at the base. This collar of more viscous fluid impedes expansion, and is
not captured by the skin theory (nor by the vertically isothermal model). As a result,
the dome radius R(t) is overestimated by the skin theory and the basal temperature
profiles compare less favourably. Nevertheless, the skin theory is arguably adequate
and certainly qualitatively correct. The large difference between Θs and Θb suggests
that the vertically isothermal model is inadequate, and even the vertical average of Θ

from the full theory compares poorly with the result from that model.
Figure 10 shows a selection of snapshots of solutions generated from the skin model,

and should be compared with the results of the full thin-layer theory in figures 1
and 5. Figures 11 and 12 compare the predictions of both models for the evolution
of the dome radius and height. Also included are corresponding results from the
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Figure 10. Snapshots of numerical solutions of the skin theory for B = 0, 1 and 10, with
κ = 0.01, 0.1, 1 and 10 at t = 11. The three rows should be compared with corresponding rows
in figures 1 and 5.
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Figure 11. (a) Dome radius and (b) maximal height for the computations of figure 10 with
B = 0 and γ = 6. The dashed lines show the skin model. The results of the full thin-layer model
are represented by solid lines. The results of the vertically isothermal model are shown by
dotted lines; only κ =1 and 10 are displayed since the others are too discordant to display.

vertically isothermal model. The temperature and height profiles are well captured
by the skin theory over most values of the dimensionless diffusivity. The comparison
improves as κ increases; in the limit of large κ , the skin theory reduces to the standard
lubrication model and both simplified theories adequately reproduce the full thermal
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Figure 12. (a) Dome radius and (b) maximal height for two of the computations of figure 10
with κ =0.01 and 1, and B = 10 and γ = 6. The dashed lines show the skin model. The results
of the full thin-layer model are represented by solid lines. The vertically isothermal model is
represented by dotted lines. The inset in (a) shows the data replotted as R/t2/5; the inset in
(b) shows a magnification near t = 100. In (b), the full thin-layer model and skin theory are
indistinguishable.

evolution. The most substantial differences occur for small κ , which is where the collar
of over-ridden cool material appears. The overturning at the edge is more prominent
for larger values of γ and smaller values of B , and so the skin theory becomes less
accurate as γ increases and B decreases. Nevertheless, the dome radii and heights
shown in figure 11 for B = 0 capture the qualitative features of the dome evolution.
Unsurprisingly, the vertically isothermal theory is much less satisfactory unless κ

exceeds 10 or so. (The curves predicted by that theory for κ = 0.01 and 0.1 bear so
little relation to those of the full thin-layer model that they confuse the picture and
so have been omitted from figure 11.) The comparison amongst the three models is
better in figure 12, which shows two representative sets of radius and height scalings
for B = 10, because thermal effects are masked by the pseudo-plug.

5. Extensional stresses
In experimental and geological flows, we often observe a thin skin of cooled

material in which the viscosity is orders of magnitude larger than in the hot interior,
and which plays a role in the flow dynamics. The shallow lava theory described in the
earlier sections predicts the creation of such surface thermal boundary layers when
the dimensionless diffusivity κ is small. However, there is also little vertical shear
in the velocity field within the skin when it is thin. Consequently, in that theory,
rheological change has little effect, and the dome expands like an isothermal fluid at
the eruption temperature, which contrasts sharply with the observations. The problem
is that the shallow-lava analysis ignores the extensional viscous stresses (embodied in
τrr , τθθ and τzz) which provide extra resistance to expansion. In this section, we extend
the theory by adding these stresses.

5.1. The velocity field below the skin

As before, the interior is characterized by p = Ps + h−z and τrz = τs −(Psr + hr )(h−z).
Now, however, because of the overlying skin, we cannot directly impose the surface
boundary conditions on this solution to eliminate Ps and τs , but we must match to
a skin solution instead. As it turns out, Ps = 0, which we assume herein, but τs does
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not disappear owing to the extensional stresses. This surface shear stress can have a
dramatic effect on the velocity field even below the skin, as we now indicate.

The constitutive model provides the relation,

τrz = τs − hr (h − z) = uz + B sgn(uz), (5.1)

provided |τrz| ≡ |hr (h − z) − τs | >B , a condition that can be written in the alternative
forms,

z < YL = h − τs

hr

− B

|hr |
or z > YU = h − τs

hr

+
B

|hr |
. (5.2)

The surface z = YL is related to the fake yield surface, Y , of previous sections. However,
the effective surface stress, τs , introduces a second fake yield surface, z = YU , which
can lie inside the fluid. In this circumstance, a yielding region appears just beneath
the surface, in addition to that beside the base. The upper yielding region is driven
by the stress induced in the skin as the interior flows beneath.

The lower yielding region exists if YL > 0, and the upper one if h − δ > YU . For
0 < YL <YU <h−δ, a pseudo-plug is contained in the region, [YL, YU ] and the velocity
field is then given by

u =




−hr (2YL − z)z/2 YL > z,

up YU > z > YL,

up + hr (z − YU )2/2 h − δ > z > YU,

up = − 1
2
hrY

2
L, (5.3)

where up is the pseudo-plug radial velocity. When YL < 0, the lower yielding region
does not exist and the pseudo-plug is stationary, but the upper region can still flow
under the action of the surface stress if 0 <YU < h − δ. For YU >h − δ there is no
upper yield region and the configuration is much as before.

For all the possible cases, the velocity at the base of the skin, ub, and the depth-
integrated radial velocity in the interior, U, can be compactly written in the form,

ub = − 1
2
hr

[
Y 2

L+ + (−YU )2+ − (YL − h + δ)2+ − (h − δ − YU )2+
]

(5.4)

and

U = − 1
6
hr

[
Y 2

L+(3h−3δ−YL) + (−YU )2+(3h−3δ−YU )+(YL−h+δ)3+−(h−δ−YU )3+
]
. (5.5)

5.2. In the skin

Within the skin, we assume that cooling creates a sufficiently strong rheological
change to promote the longitudinal stresses, τrr and τzz, to lower order in ε. In our
formulation, the primary changes occur in the viscosity, and so we set A(Θ) = ε−2a(Θ),
with a(Θ) a rapidly decreasing, but order one function such that a → O(ε2) for Θ → 1.
This increase of viscosity is sufficient to bring the extensional stresses into the main
balance, but can also enhance the vertical shear stresses. However, τrz ∼ Auz ≡ ε−2auz

must remain order unity in order to match the stresses in the interior and to balance
the gravitational driving force. Thus, uz must decrease to counter any increase in
viscosity, indicating that the radial velocity becomes nearly uniform over the skin, as
in the simpler theory of the previous section. This motivates the expansion,

u(r, z, t) = ub(r, t) + ε2uΘ (r, z, t),

w(r, z, t) = wb(r, t) + (rub)r (h − δ − z)/r + ε2wΘ (r, z, t),

}
(5.6)

where (ub, wb) is the velocity field at the base of the skin.
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In accord with (5.6), we now set

ετrr = τ̂rr = 2a
∂ub

∂r
, ετθθ = τ̂θθ =

2

r
aub, ετzz = τ̂zz = 2awz, (5.7)

but leave τrz = a(∂uΘ/∂z + wr ) order one. (The temperature is assumed not to affect
the yield stresses, and so they disappear from the leading order in the skin.) The
momentum equations become

pr = ∂r τ̂rr + ∂zτrz +
1

r
(τ̂rr − τ̂θθ ), pz = −1 + ∂zτ̂zz, (5.8)

on which we impose the mechanical boundary conditions,

p − τ̂zz = τrz + hr (p − τ̂rr ) = 0 at z = h. (5.9)

We first find

p − τ̂zz = h − z. (5.10)

For h − z > δ, a → 0 and so p → h − z. The match with the interior solution therefore
demands Ps = 0, as we already assumed. Now we focus on the radial momentum
equation, using the pressure field (5.10):

∂τrz

∂z
= hr − 4

∂

∂r

[
a

r

∂

∂r
(rub)

]
+

2ub

r

∂a

∂r
. (5.11)

The integral of (5.11) yields the relation,

τrz = −hr (h − z) + 4
∂

∂r

[
1

r

∂(rub)

∂r

∫ h

z

a(Θ) dz

]
− 2

ub

r

∂

∂r

[∫ h

z

a(Θ) dz

]
. (5.12)

We now take z = h − δ and match with the interior solution, to find:

τs = 4
∂

∂r

[
δā

r

∂

∂r
(rub)

]
− 2

ub

r
(δā)r , (5.13)

where

ā =
1

δ

∫ h

h−δ

a(Θ) dz =

∫ 1

0

a[1 − (1 − Θs)P(x)] dx (5.14)

denotes the skin-averaged viscosity. For example, with our illustrative viscosity law,
A(Θ) = exp(γ (1 − Θ)) ≡ ε−2a(Θ), we obtain

ā(Θs) = ε2 exp(γ (1 − Θb))

∫ 1

0

eqy2

dy ≈ ε2 exp(γ (1 − Θs))

×
∫ 1

0

e−2qy dy = ε2 exp(γ (1 − Θs))
1 − exp(−2q)

2q
. (5.15)

5.3. The extensional stress model

The model equations can now be summarized as follows. Because there is little shear
inside the skin, ū → ub. Hence, the total mass flux is U + δub, and E is advected only
by ub. Thus,

ht =
1

r

∂

∂r
[r(U + δū)] + Ω, Et +

1

r

∂

∂r
[r(ūE − G)] = 3

2
Θs, (5.16)

with ū = ub and G = 0. The relation between E and Θs is the same as before.
The expressions (5.4) and (5.5) give ub and U in terms of τs , which is in turn given

by (5.13). Equivalently, we may eliminate τs from these formulae to find a differential
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equation for ub, which therefore plays the role of a third dependent variable in the
extensional stress model. Convenient formulae for YL, YU and τs can be written down
that ease this passage. However, for brevity and because we only present numerical
solutions for this simpler problem, we quote the full equations for B = 0:

4
∂

∂r

[
δā

r

∂

∂r
(rub)

]
= ub

[
(h − δ)−1

+ +
2

r
(δā)r

]
+ 1

2
hr (h + δ), (5.17)

with

U = 1
2
(h − δ)+ub − 1

12
hr (h − δ)3+, (5.18)

ā = a0 exp(γ (1 − Θb))
sinh γ (Θb − Θs)

δΘs sinh γ
, a0 =

2ε2
√

κ

γ
sinh γ. (5.19)

5.4. An amalgamation of the two skin models

Through ā, ε2 appears explicitly as a parameter. The extensional stress theory is set
out for ε2eγ

√
κ ∼ γ . If ε2eγ

√
κ 
 γ , the extensional viscosity disappears from the

skin, and we would hope to recover the earlier skin theory. As the extensional stress
theory stands, however, the radial velocity is always uniform in the skin, and any
vertical shear appears in the higher-order correction, ε2uΘ , which has been dropped.
Worse still, when δ = h, the theory predicts that the dome must become stationary
owing to the enhanced vertical shear stress. However, the dome should still expand,
albeit at the much lower rate dictated by the rheology of the cold fluid.

To connect the two theories and allow expansion for δ = h, we add the mass flux
expected for ā → 0 to the extensional stress model. More specifically, in (5.16), we
introduce the relations,

ū = ub − δ2hr

2q
exp(−γ (1 − Θb))[(2q + 1)I0 − 2 + exp(−q)], (5.20)

G = δ3hr exp(−γ (1 − Θb))

[
2q(1 − I0) + 3I0 − exp(−q) − 2

8γ q
√

κ

]
(5.21)

(cf. (4.22) and (4.23), with yL = 1), which gives our final combined set of model
equations. The extra terms in (5.20) and (5.21) are relatively small in the limit relevant
to the extensional stress model, but are essential in allowing further expansion of the
dome when the skin extends to the fluid base.

5.5. Numerical solutions

5.5.1. Pure extensional stress

Sample numerical solutions of (5.16)–(5.21) are shown in figures 13–15. These show
cases in which the skin thickness δ is assumed negligible in comparison to h, which
leaves only the effect of the extensional stresses, the strength of which we estimate
using the parameter a0. Figure 13 shows a case with relatively small stresses, and
figure 14 displays a case with relatively strong ones. Figure 15 represents an inter-
mediate value. These examples illustrate two special limits of the problem.

The weaker skin stress has little effect, and the fluid beneath expands like an
isothermal flow at the eruption temperature (see figure 13). When the extensional
stress is dominant, the skin brakes almost to a halt; the fluid flows underneath and
gradually lifts up the skin, which remains more uniform in temperature (figure 14).
There is little conveyance of material to the rim in this instance, and the fluid expands
like a hot isothermal fluid with a surface on which u =0 so that the material can only
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Figure 13. A simulation for a source with B = 0, assuming the thermal boundary layer has
negligible thickness (δ 
 h). (a)–(c) show snapshots of the thickness, the surface temperature
and rub at the times t = n2, n= 1, 2, . . . , 10. The dotted lines in (a) show the corresponding
isothermal solution with a free surface. In this case, the surface viscosity is not large and the
surface velocity field approaches −h2hr/2 (the usual isothermal result) except for boundary
layers at the source and near the edge, as shown in (d). This picture also shows the extent of
the skin at t = 16, had it not been assumed infinitesimally thin (hence displaying a consistency
check), and illustrates the vertical profile of the radial velocity. The parameters of the model
are a0 = 10−4 and γ = 4. The diffusion parameter κ does not appear explicitly in the theory
when δ is assumed much less than h; in (d), δ is reconstructed assuming κ = 10−3.

rise vertically (see dotted lines in the first panels, and the velocity profile in the final
panels).† The time history of the dome radius and height is shown in figure 16. The
convergence of the solutions to the two characteristic isothermal cases (zero surface

† This limit of strong extensional stress also arises with arbitrary B , and we find an analogous
situation: provided δ remains much smaller than h, us → 0, leaving an expanding dome with a
surface that can only rise vertically. Underneath, the radial velocity profile resembles a Poiseuille
flow of a viscoplastic fluid, with two yielding regions symmetrically placed around a pseudo-plug.
Overall, in comparison with an expanding dome with a free surface, the mass flux is reduced by a
factor of 4, and the Bingham number is increased by a factor of 2.
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Figure 14. A simulation where the surface viscosity is relatively large and the velocity field in
the skin becomes practically zero. a0 = 2 and γ = 6; δ is constructed assuming κ = 10−3, but is
not included in the computation and here simply shows where the skin would have been as a
consistency check. The dotted lines in (a) show an isothermal simulation constrained to have
a surface on which u = 0 and can only be lifted vertically.

stress and a surface with u =0) is evident over longer times (in which R ∼ t1/2 and
h(0, t) ∼ t0).

5.5.2. Finite skin thickness

Extrusions with relatively weak and strong extensional stresses, but finite skin depth,
are shown in figures 17 and 18. For the relatively weak skin stress, because of the
strong surface flow, a cooled edge layer quickly develops that significantly decelerates
the fluid edge and builds up steep sides to the dome. Overall, the expansion is very
similar to that of an extrusion with a0 = 0. In fact, a good estimate of the expansion
rate seems to be provided by dimensional analysis (the curve DS in figure 17),
assuming that the edge layer controls the radial expansion and the dimension of this
layer grows like 2

√
3t (see § 4.1). This conclusion is in agreement with observations

by Stasiuk et al. (1993), drawn from their experiments with syrup. By contrast, the
dome height h(0, t), is not well predicted either by the cold dome or the dimensional
analysis, both of which predict much thicker domes. This arises because the central
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Figure 15. Sample solution for a source with intermediate skin strength. (a)–(d) as in
figures 13–14. a0 = 0.05, γ = 4 and κ = 10−3.
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Figure 16. (a) Radius and (b) dome heights against time for the three sample extrusions
(weak, intermediate and strong extensional stress). The dashed lines show isothermal extrusions,
without extensional stresses, and with a viscosity given by the eruption temperature; the two
isothermal cases differ in having either a free surface (τs = 0), or a surface with u =0 at z = h
(us = 0).
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Figure 17. An extrusion with small extensional stress and finite skin thickness. (a) Snapshots
of the dome surface and skin for t = n2 and n= 1, 2, . . . , 10; the shaded region shows the skin.
The dashed curve shows the final height profile if the skin thickness were assumed infinitely
thin, and the dash-dotted line shows an extrusion assuming a0 = 0. (b) shows corresponding
surface and basal temperatures, Θs and Θb . (c, d) show the dome radius and maximal height
against time. Also displayed are the radius and height for an isothermal extrusion with
stress-free surface (labelled τs = 0), the extrusion with a0 = 0, an extrusion with a cooling skin
assuming δ 
 h. In (c), showing the evolution of the dome radius, we have added two extra
curves (by light solid lines); these show the radius of a dome expanding isothermally at the
ambient temperature (‘Cold’), and the prediction expected from dimensional scaling (‘DS’),
assuming that a slender edge controls the expansion (see § 4.1). κ =10−3, γ =4, a0 = 10−4.

parts of the dome are much flatter than expected if we were to extrapolate from the
cooled edge.

The success of the dimensional scaling result in figure 17(a) is surprising because it
assumes that the edge layer grows in r like a motionless boundary layer, yet there is no
radial diffusion of heat in the theoretical model. In fact, the result should be viewed
with some caution; although the trend in the picture seems to be well predicted, a
closer examination (namely a plot of R/

√
t , as in the inset) shows a result much like

that found for the models without extensional stresses: the radial expansion progresses
through a transition between the extremes dictated by the hot and cold viscosities
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Figure 18. A similar picture to figure 17 showing an extrusion with a strong extensional stress
and finite skin thickness. In this case, neither the extrusion with a0 = 0 nor the dimensional
scaling result are shown. κ =10−3, γ =4, a0 = 2.

(see figure 3). Figure 17(a) shows the radial expansion over the transitional range,
where the dome radius by chance looks similar to that predicted by dimensional
analysis. However, the detailed dependence on time is not well predicted and R(t)/

√
t

gradually descends to follow the cold expansion rate.
In the case with a strong extensional stress, the skin deepens more uniformly. At

least initially, the reduced surface flux leaves a much thinner cooled edge layer at the
flow front, and the dome expands like an isothermal dome with zero radial velocity
at the surface. However, an edge layer eventually develops, steepening the sides of
the dome and braking the dome’s expansion. The expansion is then closer to that
expected for a cold isothermal dome without extensional stresses.

6. Discussion
Lubrication-style approximations for spreading cooling flows run into complications

when thermal diffusion is relatively slow. In this circumstance, the asymptotic
reduction fails to simplify the heat equation, and in the thin-layer model we couple
this unsimplified equation to a nonlinear diffusion equation for the fluid thickness.
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Part of our aim in this work has been to present an efficient numerical scheme for
tackling this type of thin-layer model. We have also offered two simpler models, a
vertically isothermal theory and a skin theory based on the integral-balance method,
that can give adequate results in some limits of the problem.

The full thin-layer model captures much of what appears in experiments with
cooling syrup (Stasiuk et al. 1993); we see a steepening in the flow front over time,
advection of cooled fluid along the surface to the flow front, a collar of overridden cool
fluid, and a plateau developing behind the steepened front (at least for small effective
diffusivity and over short enough times). For a fluid without yield stress, dimensional
scaling analysis suggests that the dome radius should vary as R(t) ∼ Ct1/2 where the
constant C proceeds in time through the sequence: 1 → (κA0)

−1/7 → A
−1/8
0 , where A0

is the factor by which the viscosity is enhanced on cooling and κ the dimensionless
conductivity. In numerical computations with both the full model and with the two
simpler models, we certainly observe the first and last scaling; the dome begins
to expand as though it were entirely hot, but much later expands as though it were
completely cold. The intermediate scaling is not truly observed, although there is some
suggestion that this scaling may superficially resemble the correct radial expansion,
as seen in experiments. The intermediate scaling is not observed because the cooled
layer at the edge does not thicken like a motionless thermal boundary layer, but is
fed by flow along the dome’s surface. Moreover, the cold material does not collect at
the edge, but is overridden to produce the underlying collar.

For a yield-stress fluid, there is a reduced sensitivity to thermal effects, as seen in
the experiments by Griffiths & Fink (1997). Cooling has little effect because of the
almost plug-like flow that arises in the upper parts of the dome. Here, there is little
vertical shear and any elevation in viscosity due to cooling is inconsequential. This
shielding effect was observed in earlier models (paper 1).

Although such shielding is physically plausible, a key effect is missing: the promo-
tion of extensional viscous stresses by cooling. The thin-layer model does not incor-
porate such stresses because, in the standard asymptotic scalings, they lie at a higher
order than the vertical shear stress. Yet cooling-induced variations are very significant
in fluids like lava, which often form rheologically distinct skins atop the flow. Exten-
sional stresses are straightforwardly added to the skin theory, and so set the stage for
study of these flows. The model predicts that significant extensional stresses bring the
skin almost completely to rest, although hot fluid continues to expand underneath.
Eventually, cooling thickens the skin to the point where it reaches the base, at which
point vertical shear stresses again take control.

One future application of the current theory is to lava flows in which surface mor-
phology is used to infer emplacement conditions (Griffiths 2000). For example, fingers
and lobes appear in many extrusion experiments, and in paper 1 we concluded that
axisymmetric expansion in the vertically isothermal model could be linearly unstable
to some non-axisymmetric perturbations. Whether such perturbations remain unstable
in more refined models with lower thermal diffusivity remains an open question. It is
also worth noting that domes with strong extensional stresses can have a very thin skin
near the flow front, which could be prone to rupture. Hot less viscous material may
then emerge to create the complicated ‘compound’ flows visible in many lava fields.

We should also add that the temperature-dependence of the yield stress can be signi-
ficant in lava, an effect that we have completely ignored so far. In this geological
application, the yield stress arises from the crystal content, and crystallization occurs
on cooling. To conclude, we show a solution of the shallow lava model with τp a
prescribed, exponential function of T ; see figure 19. In dimensionless variables, this
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Figure 19. Snapshots of an evolving dome with a temperature-dependent yield stress at
times (a) t = 1, (b) 4 and (c) 11, of the temperature distribution (colourmap), the fluid surface
(lighter lines) and fake yield surfaces (dark lines). The yield stress is given by τp(T ) =
τp(Te)e

γB (1−Θ), with γB = 6 and B = Hτp(Te)/(ηeU ) = 1. The other parameters were γ =6 and
κ = 0.01. More details of the numerical procedure are given in Appendix A.2.

modification amounts to replacing B by Bg(Θ), with g(1) = 1. The main novelty intro-
duced by the temperature variation is that the yield condition, τ (r, z, t) > Bg[Θ(r, z, t)],
is no longer straightforward to solve for the fake yield surface. In fact, there can be
more than one solution to

τ (r, Y, t) = Bg[Θ(r, Y, t)], (6.1)

which raises the possibility of multiple pseudo-plugs. Indeed, the numerical solution
displays the development of a second pseudo-plug within the expanding cold collar
at the fluid edge (which may even contain a true plug). This emplaces a further
barrier to the outflow and a strong upward current develops to surmount the collar.
Otherwise, the flow dynamics is not very different from the cases considered earlier.
The formation of the second pseudo-plug requires a dominance of the change in
yield stress over that of the viscosity, which is guaranteed by suitable choices of the
parameters (see paper 1).

This work was supported by the National Science Foundation (Grant no. DMS
72521).

Appendix A. Numerical scheme
We apply the change of variables, r = ξR(t) and z = ζh(ξ, t), where R(t) is the

contact radius, to furnish the new set of evolution equations:

ht =
1

ξ
∂ξ

[
−ξ

ψ(ξ, 1)

R

]
+ Ω +

ξRt

R
hξ , (A 1)

Θt = −
(

u − ξRt

R

)
Θξ − 1

h

[
w − ζ

(
ht + u

hξ

R
− ξhξRt

R

)]
Θζ +

κ

h2
Θζζ , (A 2)

u(ξ, ζ ) = −hξh
2

R

∫ ζ

0

Υζ dζ ′, w(ξ, ζ ) = − 1

ξR
∂ξ (ξψ) +

ζhξ

R
u + Ω, (A 3)

ψ(ξ, ζ ) = −hξh
3

R

∫ ζ

0

Υ dζ ′, Υζ =

{
0 for ζ > η,

(η − ζ )/A(Θ) for ζ � η,
(A 4)



Cooling viscoplastic domes 177

and η = Y/h = 1−RB/(h|hξ |) is the yield surface in the rescaled domain. The boundary
conditions are: Θξ =hξ = 0 for ξ =0 and Θξ = 0, h = 10−4 for ξ = 1; Θζ =0 at the
bottom, outside the vent, Θ = 1 over the vent, and

√
κΘζ = −hΘ at the free surface.

We solve these equations by discretizing all the spatial derivatives, and then
numerically integrating the large system of ordinary differential equations that result.
We index the grid points by the pair of integers (i, j ), in the ξ - and ζ -directions,
respectively, and denote the solution on this grid by h(i) and Θ(i, j ). Vertical thermal
diffusion is handled by second-order-accurate finite differences on a grid determined by
Chebyshev collocation. We use a Petrov–Galerkin scheme to handle radial derivatives
in the h equation, and a Van Leer flux-limiting algorithm for the advective terms in
the heat equation; neither of these discretizations requires the addition of an explicit
linear diffusion to operate efficiently. The entire computational algorithm is coded in
Matlab and makes use of that software’s existing routines. We tested the accuracy
of the various discretizations against several model problems and special limits, and
checked the numerical integration as a whole using global integrals of the equations
(namely mass and energy conservation). The computational scheme is summarized as
follows:

(a) Equation of motion of the fluid edge. At the contact radius r =R(t),
h(ξ = 1, t) =hw . We differentiate in time: ht (ξ = 1, t) = 0. From equation (A 1), the
contact radius therefore evolves as

Rt =

[
1

hξ

∂ξ (ξψ)

]
ξ=ζ=1

=

[
u − Rw

hξ

]
ξ=ζ=1

, (A 5)

provided the source Ω vanishes at the edge. We time step this equation along with
the discretized forms of the partial differential equations.

(b) Vertical discretization and evaluation of integrals in (A 3)–(A 4). The function
Υζ is approximated by Chebyshev polynomials and the integrals in (A 3)–(A 4) are
numerically evaluated (Press et al. 1992). For this purpose, the computational points
are collocated along the ζ -axis at the roots of Chebyshev polynomials. We also
include the points, ζ =0 and 1, in order to impose directly the boundary conditions.
The total number of grid points in ζ is Nζ .

(c) Vertical diffusion in (A 2). The Chebyshev collocation is also used in the
discretization of the vertical diffusive term in the heat equation, which is dealt
with using the finite-difference second-order three-points formula,

Θζζ (i, j ) =
2Θ(i, j − 1)

(ζj+1 − ζj−1)(ζj − ζj−1)
− 2Θ(i, j )

(ζj+1 − ζj )(ζj − ζj−1)
+

2Θ(i, j + 1)

(ζj+1 − ζj−1)(ζj+1 − ζj )
.

(A 6)

Typically, discretizations with as few as 20 points were sufficient to compute both the
integrals for the velocity field and the vertical diffusion.

(d) Collocation in radius. The points along the ξ -axis are collocated in [0, 1)
according to the relation dξn/dn = ς (n − 1)N0 (n − Nξ )

N1 , where n is the point index
and ς is set so that ξNξ

= 1. By varying the exponents N0 and N1 we may increase the
densities of points near the ends of the domain. Both are critical for resolution: at
the fluid edge ξ ≈ 1, hξ needs to be resolved, while we must sample the vent region
properly in order to keep the mass flux constant. As a rule of thumb, we found
that Nξ = 80 to 120 points were sufficient. We also recommend N0 = 1 and N1 = 1 for
B ≈ 0, N1 = 2 for B ≈ 10, and N1 = 3 for B ≈ 100.
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(e) Mass flux terms in (A 1). The spatial discretization of the h-equation is performed
using a second-order Petrov–Galerkin method suggested by Skeel & Berzins (1990);
the scheme automatically incorporates the coordinate singularity at the origin. First,
two sets of quadrature points are generated:

ξ̂i+1/2 =
2

3

ξ 2
i+1 + ξi+1ξi + ξ 2

i

ξi+1 + ξi

, ξ̌ 2
i+1/2 =

1

2

ξ 2
i+1 − ξ 2

i

log ξi+1 − log ξi

, (A 7)

with ξ̌3/2 = 0. Then, h and hξ are evaluated at the first of these quadrature points by
the interpolation formulae,

h
(
ξ̂i+1/2

)
= h(i) +

ξ̂ 2
i+1/2 − ξ 2

i

ξ 2
i+1 − ξ 2

i

[h(i + 1) − h(i)] , hξ

(
ξ̂i+1/2

)
=

2ξ̂i+1/2

ξ 2
i+1 − ξ 2

i

[h(i + 1) − h(i)] .

(A 8)

We use a similar construction to evaluate the integral, Υ , at the quadrature points,
but this further requires η and therefore hξ : Guided by (A 8), we use the average,

hξ (i) =
ξi

ξi+1 + ξi

h(i + 1) − h(i)

ξi+1 − ξi

+
ξi

ξi + ξi−1

h(i) − h(i − 1)

ξi − ξi−1

. (A 9)

We next compute the flux and source terms in (A 1) at ξ̂i+1/2, denoted gi+1/2 and
fi+1/2, respectively. Thence,

ht (i) =
2

ξ̌ 2
i+1/2 − ξ̌ 2

i−1/2

(
gi+1/2ξ̌

2
i+1/2

ξ̂i+1/2

−
gi−1/2ξ̌

2
i−1/2

ξ̂i−1/2

)
+

ξ̌ 2
i+1/2 − ξ 2

i

ξ̌ 2
i+1/2 − ξ̌ 2

i−1/2

fi+1/2

+
ξ 2
i − ξ̌ 2

i−1/2

ξ̌ 2
i+1/2 − ξ̌ 2

i−1/2

fi−1/2, (A 10)

ht (1) = 2
g3/2

ξ̂3/2

+ f3/2.

An analogous procedure allows us to discretize the equations for Rt :

Rt = −R

[
2gNξ +1/2ξ̌

2
Nξ +1/2ξ̂

−1
Nξ +1/2 − 2gNξ −1/2ξ̌

2
Nξ −1/2ξ̂

−1
Nξ −1/2(

ξ̌ 2
Nξ +1/2 − 1

)
hξ

(
ξ̂Nξ +1/2

)
ξ̂Nξ +1/2 +

(
1 − ξ̌ 2

Nξ −1/2

)
hξ

(
ξ̂Nξ −1/2

)
ξ̂Nξ −1/2

]
. (A 11)

(f ) Discretization of the radial advection terms in (A 2). The discretization of the
advection terms in the heat equation must cope with the sharp temperature gradients
that are advected with the flow. A simple first-order advective scheme would introduce
a large numerical diffusion that may well become bigger than the physical one. On
the other hand, any linear second-order scheme has problems in dealing with large
gradients and would inevitably produce spurious oscillations at the discontinuities.
We therefore opted to use a Van Leer flux-limiter (Hirsch 1988; LeVeque 1992), which
is second-order accurate and ‘total variation diminishing’, even in non-conservative
form (Zvan, Forsyth & Vetzal 1998). The derivative, Θξ , is approximated with the
second-order centred formula,

Θξ (i, j ) =
Θ

(
i + 1

2
, j

)
− Θ

(
i − 1

2
, j

)
ξi+1/2 − ξi−1/2

, (A 12)
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where ξi+1/2 = (ξi+1 − ξi)/2. The value of the temperature at the mid-points depends
on the sign of the velocity û= (u − ξRr )/R, in an upwind fashion: If ûi,j � 0

Θ
(
i + 1

2
, j

)
= Θ(i, j ) + φ

(
qi+1/2,j

)Θ(i + 1, j ) − Θ(i, j )

2
,

(A 13)
qi+1/2,j =

Θ(i, j ) − Θ(i − 1, j )

ξi − ξi−1

ξi+1 − ξi

Θ(i + 1, j ) − Θ(i, j )
,

and if ûi,j < 0,

Θ
(
i + 1

2
, j

)
= Θ(i + 1, j ) − φ

(
qi+1/2,j

)Θ(i + 1, j ) − Θ(i, j )

2
,

(A 14)

qi+1/2,j =
Θ(i + 2, j ) − Θ(i + 1, j )

ξi+2 − ξi+1

ξi+1 − ξi

Θ(i + 1, j ) − Θ(i, j )
.

The function φ = (|q| + q)/(1 + |q|) is the ‘Van Leer flux limiter’. The scheme is applied
in non-conservative form to avoid numerical cancellations.

A similar approximation was used for the ζ advective term, but the computation
of the corresponding velocity,

ŵ =
1

h

{
1

ξ
∂ξ

[
ξ
ζψ(ξ, 1) − ψ

R

]
+ (1 − ζ ) Ω

}
≡ 1

h

(
1

ξ
∂ξ G + F

)
, (A 15)

deserves further mention. To be consistent with the treatment of the h-equation, at
each vertical collocation point a Petrov–Galerkin-like discretization was employed:

ŵi,j

=
2ξ̌ 2

i+1/2Gi+1/2,j

/
ξ̂i+1/2−2ξ̌ 2

i−1/2Gi−1/2,j

/
ξ̂i−1/2+

(
ξ̌ 2
i+1/2−ξ 2

i

)
Fi+1/2,j+

(
ξ 2
i −ξ̌ 2

i−1/2

)
Fi−1/2,j

h(i)
(
ξ̌ 2
i+1/2−ξ̌ 2

i−1/2

) ,

ŵ1,j =
1

h(1)

(
2

G3/2,j

ξ̂3/2

+ F3/2,j

)
. (A 16)

(g) Excessive edge gradients. Outside the dome, h is by definition zero. However,
this introduces difficulties because the height gradient can then become singular at
the edge of the dome (see Balmforth et al. 2000). To avoid this problem, we ‘pre-wet’
the surface with a thin film of fluid, and introduce a certain number of ‘ghost points’,
located inside the film (usually 3). At these ghost points, we take ξ � 1, h = hw , η =1
and

Θ(ζ )=Θb +ζ 2 (Θs −Θb) , Θb = min

(
Θs +

hw

2
Θs; 1

)
, Θs = exp(−

√
κt/hw), (A 17)

which is based on an integral-balance solution of the heat equation (computations
with the full diffusion equation confirm its accuracy). We typically use hw =10−4, but
different choices make negligible difference to the outcome.

(h) Thermal boundary conditions. The thermal boundary conditions are:

Θξ (1, j ) = Θξ (Nξ + 2, j ) = 0, Θζ (i, Nζ ) = −[h(i)/
√

κ]Θ(i, Nζ ),

Θ(i, 1) = 1 for ξi � r∗/R, Θζ (i, 1) = 0 for ξi > r∗/R.



180 N. J. Balmforth, R. V. Craster and R. Sassi

These conditions are directly applied when constructing the advective terms. For the
vertical diffusion term:

Θζζ (i, 1) = 2
Θ(i, 2) − Θ(i, 1)

ζ 2
2

for ξi > r∗/R,

Θζζ (i, Nζ ) = −2
Θ(i, Nζ ) − Θ(i, Nζ − 1)(

ζNζ
− ζNζ −1

)2
− 2h(i)√

κ

Θ(i, Nζ )(
ζNζ

− ζNζ −1

) , (A 18)

which are second-order approximations, consistent with (A 6). Over the vent region,
Θ is specified, so we need no analogue of the first of these relations.

(i) Initial conditions. At t = 0, the dome starts expanding from R = r∗ with h = hw

and Θ = 1.
(j ) Time integrator. The discretized system of equations is integrated numerically

using fifth-order backward differentiation formulae (Gear’s method). The sparsity
pattern of the Jacobian matrix generated from the right-hand sides of the equations
is exploited explicitly to reduce numerical computation and memory requirements.
Also the variables are reordered to speed up the LU factorization of the sparse
system.

A.1. Schemes for the skin models

The two codes used for the skin models are as follows: The first code uses the
adaptive scheme of Blom & Zegeling (1994). To ensure the efficient performance of
the adaptive code, we pre-wet the plane with a thin film of fluid (h(r, 0) = 2 × 10−4)
and add linear diffusion terms to both the h and E equation (with diffusivities
3 × 10−4/[1 + 10 max(t, 1)]). We impose the boundary conditions, hr = Θr = ub = 0 at
r = 0, and h = 2×10−4 and Θs = ub = 0 at the edge of the computational domain. (For
the skin model without extensional stresses, ub is prescribed and needs no boundary
conditions.) We use an expanding coordinate system in which, at each timestep, the
domain expands at a rate given by the speed of the dome’s edge (defined as the radius
where h = 0.1) at the previous timestep. We begin the computation with a domain
size of radius 1.1r∗.

The second scheme is a Petrov–Galerkin scheme for spatial discretization coupled
with a Gear solver in time, along the lines described earlier. The Petrov–Galerkin
scheme does not require additional diffusion or pre-wetting, and at the edge we
impose h = Θs = ub = 0. At r = 0, the boundary conditions are the same as in the other
scheme. The computational domain is again expanding; we solve explicitly an equation
of motion for edge, as discussed earlier. Both simulations are orders of magnitude
faster than those for the full shallow-lava model.

A.2. Temperature-dependent yield stress

When the yield stress depends on the temperature, we define

τp(T ) = τp(Te)g(Θ), B =
Hτp(Te)

ηeU
, (A 19)

(cf. (2.5)) with g(1) = 1, to isolate the temperature variation of the yield stress
from its characteristic value at the eruption temperature. For illustration, we take
g(Θ) = exp(γB(1 − Θ)), with γB a parameter. The (fake) yield condition, τ � τp , now
becomes

τ = |τrz| = |hr |(h − z) � Bg(Θ). (A 20)
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Because Θ varies with depth, this condition is no longer straighforward to implement,
and the location of a fake yield surface must follow from solving the implicit equation,

|hr |(h − Y ) = Bg[Θ(r, Y, t)]. (A 21)

In fact, in principle, there may be multiple solutions to this equation (which we label
by z = Yl , for l =1, 2, . . .), revealing the presence of more than one pseudo-plug. We
find numerically that such regions do indeed appear (see § 6).

The yield condition can be written in the form,

C = Y(z) − z ≡ h − Bg(Θ)

|hr |
− z � 0, (A 22)

from which the velocity field follows from

uz = −hr

{
0 for C < 0,

[Y(z) − z]/A(Θ) for C � 0.
(A 23)

As regards numerical implementation, the fake yield surfaces are found by Newton
iteration using Chebyshev interpolation between the grid points in ζ = z/h. Note
that, because the grid points at ζ = 0 and 1 are not Chebyshev collocation points,
the Chebyshev interpolation can fail in their vicinity; to avoid this problem, we use
a linear interpolant for ζ1 = 0 <ζ <ζ2 and ζNζ −1 <ζ <ζNζ

= 1. To improve further the
accuracy, we evaluate the integrals over ζ by first splitting them at all the fake yield
surfaces.
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